Scavenger receptor MARCO is associated with an immunosuppressive microenvironment and tumour progression in intrahepatic CCA

Aloña Agirre-Lizaso,¹ Maider Huici-Izagirre,¹ Colm J O'Rourke,² Ekaterina Zhuravleva,² Ana Korosec,³ Mikel Azkargorta,^{4,5} Felix Elortza,^{4,5} Javier Vaquero,⁶ Sumera I Ilyas,⁷ Gregory J Gores,⁷ Jesper B Andersen,² Gernot Schabbauer,³ Luis Bujanda,^{1,4} Pedro M. Rodrigues,^{1,4,8} Omar Sharif,³ Jesus M. Banales,^{1,4,8,9} Maria J. Perugorria.^{1,4,10}

¹ Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University of the Basque Country (UPV/EHU), San Sebastian, Spain; ² Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Centre for Physiology, Medical University Vienna, Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria; ⁴ CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; ⁵ Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain; ⁶ TGF-ß and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France; ⁷ Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; ⁸ IKERBASQUE, Basque Foundation for Science, Bilbao, Spain;⁹ Department of Biochemistry and Genetics, School of Sciences, University of Medicine, Faculty of Medicine, Faculty of Medicine, Faculty of the Basque Country (UPV/EHU), Leioa, Spain.

BACKGROUND

- Cholangiocarcinoma (CCA) comprises a heterogeneous group of malignant tumors with dismal prognosis.
- In CCA. immune cells present in the microenvironment have been tumour reported to support tumour progression.
- Targeting the immune system in CCA is a promising approach for <u>anti-cancer</u> <u>therapy.</u>
- Scavenger receptor MARCO plays a tole determining in macrophage polarization and consequently in adaptive immune responses in many solid tumours.

AIMS

Understand the role of scavenger receptor MARCO in intrahepatic CCA (iCCA) development and progression.

Evaluate the potential role of MARCO as a novel prognostic and therapeutic target.

METHODS

- Evaluation of <u>cell-type specific MARCO</u> expression in iCCA human tumours in single-cell RNA sequencing data from different functional and studies MARCO-expressing characterization Of TAMs.
- Analysis of MARCO mRNA expression in liver tissue samples from patients with iCCA individuals and control compared clinicopathological correlation parameters.
- Association of MARCO expression to the immunological microenviroment in iCCA employing **bioinformatic tools**.
- Study the role of Marco in the of progression of iCCA development and mouse models.
- Flow cytometry analysis of the TME in iCCA models of WT and *Marco^{-/-}* mice.

CONTACT

matxus.perugorria@biodonostia.org jesus.banales@biodonostia.org

RESULTS Cirrhotic live LSECs T cells NK cells iCCA (GSE151530) -25 0 25

(A) Analysis of cell-type-specific MARCO expression in normal, cirrhotic and iCCA livers by single-cell RNA sequencing; (B) MARCO mRNA (microarray expression in normal bile duct (n=9) and surrounding normal human tissue (n=143) compared to IDH1 (n=16), KRAS (n=16), TP53 (n=17), BRAF (n=6) CDKN2A (n=3), NRAS (n=6), PIK3CA (n=4), FGFR2 mutant (n=18) iCCA tumors or harboring no mutations in any of those genes, Udt-group (n=64); (C) Multivariate analysis of 5-year overall survival of patients with iCCA according to MARCO expression levels and KRAS driving mutation status.

A Jusakul c		cohort
Cell type	Spearman (r)	<i>p</i> -val
Macrophages	0.432	6.59E
Macrophages (M2)	0.377	0.000
Dendritic cells	0.343	0.00
Monocytes	0.327	0.00
Neutrophils	0.302	0.006
Macrophages (M1)	0.298	0.007
Fibroblasts	0.296	0.007
Eosinophils	0.292	0.008
Plasma cells	0.279	0.011
B cells	0.260	0.019
CD4+ T cells	0.254	0.022
Mast cells	0.232	0.037
T cells gamma delta	0.214	0.054
CD8+ T cells	0.200	0.072
T regulatory cells	0.190	0.088
Cytotoxic cells	0.189	0.091
Natural Killer cells	0.175	0.118
Endothelial cells	0.150	0.179
(A) Correlation	of MARCO	expre

T cell dysfunctionality in iCCA using the TIDE algorithm.

CONCLUSIONS

MARCO expression is lower in iCCA liver tissue in comparison to surrounding non-tumoral liver tissue and normal bile duct regardless the mutational profile. Moreover, high levels of MARCO are associated to a worse prognosis in terms of overall survival (OS). MARCO is expressed in a subtype of TAMs associated with an immunosuppressive phenotype in iCCA. MARCO expression levels are strongly associated with the relative abundance of immune cell types involved in tumour progression and with T cell dysfunction in iCCA. Marco deficiency protects mice from tumorigenesis and halts tumoural progression in murine models of iCCA.

(A) Graph-based clustering of TAMs by numbers and analysis of MARCO expression therein; (B) Heatmaps of differentially expressed genes (|logFC|<1, adjusted p-value < 0.01) between MARCO expressing and non-expressing TAMs in human iCCA; (C) Volcano plots including genes that are increased or decreased in MARCO-expressing tumour infiltrating macrophages in 3 studies; (D) Reactome analysis of the commonly upregulated or downregulated genes in MARCO-expressing TAMs in comparison to MARCO non-expressing TAMs in 3 studies.

UPV EHU