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BACKGROUND
§ Cholangiocarcinoma (CCA) comprises a
heterogeneous group of malignant tumors with dismal
prognosis.

§ Given the complex biology of CCA, it is important to
identify key molecular mechanisms involved in
cholangiocarcinogenesis.

§ Post-translational modifications (PTMs) provide a
rapid mechanism for the activation or inhibition of signaling
pathways and metabolism of proteins.

§ Alterations in PTMs, including SUMOylation, result in
abnormal protein dynamics, cell disturbances and disease.

§ ML792, a selective SAE1 inhibitor, and S-
adenosylmethionine (SAMe), which targets UBC9, are
inhibitors of the SUMOylation pathway.

METHODS
• Expression analysis (mRNA) of the SUMOylation

pathway components (SAE1, UBE2I and SUMO1) in
CCA and surrounding liver tissue samples of four
independent cohorts: Copenhagen (microarray), TCGA
(RNA-seq), TIGER-LC (microarray) and San Sebastian
(qPCR).

• Expression analysis (mRNA and protein) of
SUMOylation in CCA cell lines (EGI1, HUCCT1, TFK1
and WITT) and normal human cholangiocytes (NHC).

• Identification of SUMOylation targets by
immunoprecipitation of SUMO1-conjugated proteins
from CCA cell lines and NHC and comparative shotgun
proteomic analyses by mass spectrometry (MS).

• Evaluation of the effect of pharmacologically inhibiting
SUMOylation with SAMe or ML792 in CCA cell
proliferation, colony formation and survival in vitro.

• Evaluation of the effect of SAMe and ML792 in
subcutaneous mouse models of CCA.

• Molecular targeting of SUMOylation using the
CRISPR/Cas9 methodology in CCA cells.

• Determination of the impact of CRISPR/Cas9-UBE2I in
CCA cell proliferation, colony formation and
tumorigenesis.

• Assessment of the role of SUMOylation in the
crosstalk between CCA cells and cancer-associated
fibroblasts (CAFs), endothelial cells (HUVECs) or
monocytes.

AIM
Explore in detail the role of protein SUMOylation in
cholangiocarcinogenesis and evaluate its therapeutic
potential in experimental models of CCA.

CONCLUSIONS
Aberrant protein SUMOylation contributes to
cholangiocarcinogenesis by promoting cell survival and
proliferation.

Targeting protein SUMOylation reduces cell
proliferation and tumor growth in experimental
models of CCA.

Abnormal protein SUMOylation impacts on the
CCA-stroma crosstalk.

Inhibition of SUMOylation with SAMe or ML792 may
represent a potential therapeutic strategy for patients
with CCA.

RESULTS
Figure 1: Expression levels of the SUMOylation pathway in human CCA tissue 
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Figure 2: Aberrant protein SUMOylation in human CCA cells in vitro 

Figure 3: ML792 reduces proliferation and survival of CCA cells and halts CCA growth 

in vivo

Figure 4: SAMe reduces proliferation and survival of CCA cells and halts CCA growth

in vivo

Figure 5: CRISPR/Cas9-UBE2I CCA cells recapitulate SUMOylation inhibition-mediated

effects on CCA 

Figure 6: SUMOylation impairment impacts on the crosstalk between CCA cells and 

their microenvironment 
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A) SAE1 and UBE2I mRNA expression in CCA tumors compared to NBDs and/or surrounding human liver
tissue from the Copenhagen, TCGA, TIGER and San Sebastian cohorts of patients. B) Tumor recurrence
of CCA patients (Copenhagen cohort) with low and high SAE1 expression levels. C) SAE1 mRNA
expression in CCA tumors (Copenhagen cohort) grouped by tumor differentiation grade. D) Representative
IHC images of SUMO1 and SUMO1-conjugated proteins in human liver tissues. Scale bars: 50µm.
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A) SAE1, UBE2I and SUMO1 mRNA expression in NHCs and CCA cell lines. B) Representative
immunoblot and quantification of SUMO1 and SUMO1-conjugated proteins in NHCs and CCA cells. C)
Representative immunoblot of SUMO1-IP in NHC and CCA (EGI1) cells. D) Volcano plot of all identified
SUMO1-IP proteins (n=310) by MS comparing fold enrichment in CCA to NHC. E) Proteomic analyses of
significant identified proteins (n=79) between CCA and NHC by GO.
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A) Cell proliferation in NHC and CCA cell lines after incubation with ML792. B) Apoptosis of NHC and CCA
cell lines after ML792 incubation. C) Representative images of vehicle- or ML792-administered CCA
tumors, and D) tumor volume growth.
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A) Representative immunoblot and quantification of WT and UBE2I knockdown CCA cells (clones 1 and 3).
B) Proliferation. C) Representative images of Ctrl and UBE2I knockdown CCA tumors, and D) tumor
volume growth. E) Proteomic analyses of significant differentially identified proteins in the Ctrl and
CRISPR/Cas9-UBE2I CCA cells by GO.

Ctrl or UBE2I
knockdown CCA cells

CAFs HUVECs

Macrophages

Ctrl or UBE2I
knockdown CCA cells

Ctrl or UBE2I
knockdown CCA cells

A) 

****
******* *

CAF

0

50

100

150

Pr
ol

ife
ra

ito
n

(%
 to

co
nt

ro
l m

ed
ia

)

Ctrl G3.1 G3.3
UBE2I

knockdown

̶Co-culture

*

HUVEC

0

50

100

150 *

Ctrl G3.1 G3.3
UBE2I

knockdown

̶Co-culture

Pr
ol

ife
ra

ito
n

(%
 to

co
nt

ro
l m

ed
ia

)

B) C) 

0

200

400

600

800

TNFɑ

**** ******

M0 M1 M2
0

500

1000

1500

2000

CD206

****

M0 M1 M2

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

(%
)

0

50

100

150

TNFɑ

*

Ctrl G3.1 G3.3

R
el

at
iv

e 
m

R
N

A 
ex

pr
es

si
on

(%
)

M0 co-culture
0

50

100

150
CD206

** *

Ctrl G3.1 G3.3

A) Schematic representation of co-culture experiments and proliferation of CAFs and B) HUVECs after co-
culture with Ctrl or UBE2I knockdown CCA cells. C) TNFɑ and CD206 (M1 and M2 macrophage markers,
respectively) mRNA expression in monocytes after differentiation towards M1 or M2 macrophages and after
coculture with Ctrl or UBE2I knockdown CCA cells.

log2 (CCA/NHC)
-4 -2 0 2 4

0

2

4

0.001

0.01

0.05-lo
g 1
0
(p
va
lu
e)

Biological processes associated to upregulated
SUMOylated proteins in CCA vs NHC

-log10 (p value)

NFκB signaling

Response to ER stress

Survival

DNA replication and cell cycle

Protein folding

Translation

1 10 100

Cell proliferation


